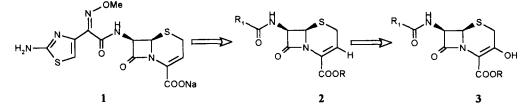


PII: S0040-4039(97)00588-1

Palladium-Catalysed Reduction of 3-Substituted Cephems. A High Yield Approach to Ceftizoxime Synthetic Intermediates.

Walter Cabri¹¹


Bristol-Myers Squibb, Chemical Research & Development, via del Murillo, Sermoneta-04010 (LT), Italy

Maurizio Botta,* Federico Corelli* and Flavia Messina

Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Banchi di Sotto 55, Siena-53100, Italy

Abstract: A high palladium-catalysed approach to Ceftizoxime intermediate is described. © 1997 Published by Elsevier Science Ltd.

Ceftizoxime sodium 1 is a sterile, broad-spectrum, β -lactamase resistant third generation cephalosporin for parental administration.² Up to now several synthetic approaches have been described, however, the key step is always the conversion of the 3-OH cephem 3 into 2.³ In this context, the interesting synthesis described by Farina centred on the palladium-catalysed reduction of 3-trifluoromethanesulfonyl cephem suffers of some drawbacks.⁴ In fact, following a Stille type protocol, the hydride source is the expensive and toxic nBu₄SnH.⁵ On the other hand, the advantage of this procedure is the use of neutral conditions that avoid $\Delta 2/\Delta 3$ isomerization⁶ and the decomposition of the sensitive β -lactam ring.

We would like to report herein our results on the use of a cheap and non-toxic hydride source, namely Et_3SiH , for the synthesis of Ceftizoxime key intermediate by palladium-catalysed reduction.⁷ We investigated the reduction of 3-Cl 4⁸ and 3-OTf 5⁹ cephem derivatives using catalysts generated in situ from Pd(OAc)₂ and the ligand.¹⁰ The presence of a base was unnecessary because the reaction side products (Et_3SiCl or Et_3SiOTf) were not able to destroy the active Pd(0) complex. Independently from the leaving group, the reduction carried out in the absence of phosphine ligands afforded the over-reduced products 7 (Table I, entries 1 and 4). On the other hand, the reduction of chloride 4 using 1,1'-bis-diphenylphosphino ferrocene (DPPF) and PPh₃ as palladium ligands afforded compound 6 in 10% and 52%, respectively (entries 2 and 3). Switching to enol triflate 5, using DPPF and six equivalents of Et_3SiH , cephem 6 was isolated in high yield (entry 5). Under these reaction conditions, the palladium-catalysed decomposition of Et_3SiH to H₂ and (Et_3Si)₂ becomes competitive with the oxidative-addition step. This side reaction was completely suppressed by using PPh₃ instead of DPPF. In fact, only one equivalent of Et_3SiH was necessary to achieve a complete reduction (entry 6). In dioxane, only traces amount of 6 were detected after 24 h with

			solvent		+		N S OR
R: 4-MeO-B	n 4 X: Cl 5 X: O	ſf		6			7
Entry	Substrate	L	Solvent	Et ₃ SiH/substrate molar ratio	t h	Conv ^b	Product (yield, %) ^c
1	4	-	DMF	6	3	100	7 (21) ^d

Table I. Palladium-Catalysed reduction of 3-substituted cephem derivatives.^a

_								(yield, /b)
	1	4	-	DMF	6	3	100	7 (21) ^d
	2	4	DPPF	DMF	6	24	46°	6 (10)
	3	4	PPh ₃	DMF	6	16	100	6 (52)
	4	5	-	DMF	6	24	100	7 (27) ^d
	5	5	DPPF	DMF	6	3	100	6 (80)
	6	5	PPh ₃	DMF	1	2	100	6 (83)
	7	5	PPh ₃	dioxane	12	3	100	6 (75)

a. See reference 10. b. Determined by ¹H NMR. c. Isolated yields. d. 7 was a 1/1 mixture of C-4 epimers by ¹H NMR. e. 34% of $\Delta 2$ cephem.

one equivalent of Et_3SiH . However, using a large excess of the reducing agent a complete conversion was obtained (entry 7).

Summing up, we have described a high yield synthesis of Ceftizoxime key intermediate 2 using environmentally friendly reagents. The use of cheap PPh₃ as ligand for the palladium-catalysed reduction gave the best results in terms of reaction rate and atom economy.

References and Notes

- 1. Present address: Secifarma, via Bissone,5Baranzate di Bollate-20021 (MI), Italy.
- 2. Takaya, T.; Takasugi, H.; Tsuji, K; Chiba, T. Ger. Offen. 2810922 (1978).
- 3. Kobayashi, M.; Kato, M.; Ueda, I. Chem. Pharm Bull. 1988, 36, 582 and reference therein.
- 4. Farina, V. Baker, S.R.; Benigni, D.A. J. Org. Chem. 1990, 55, 5833.
- 5. Evans, C, J.; Karpel, L.S. Organic Compound in Modern Technology, Elsevier, New York, 1985. Chapter 10.
- 6. Botta, M.; De Rosa, M.C.; Di Fabio, R.; Mozzetti, C.; Santini, A.; Corelli, FElectronic. J. Theor. Chem. 1996, 1, 52.
- Bidentate phosphine ligands gave the best results in palladium-catalysed reduction of aryl sulfonates using triethylammonium formate as hydride source. Cabri.W; DeBernardinis,S.; Francalanci,F.; S.Penco; Santi,R. J. Org. Chem. 1990, 55, 350. Similar observation was made using Et₃SiH. Kotsuki,H.; Datta,P.K.; Hayakawa,H.; Suenaga,H. Synthesis 1995, 1348.
- 8. Chauvette, R.R. US 3.925,372 (1975).
- 9. Farina, V.; Baker, S.R.; Hauck, S.I. J. Org. Chem. 1989, 54, 4962.
- 10. Table I, entry 6: To a DMF (2.0 mL) solution of 5 (176 mg, 0.3 mmol), under argon atmosphere, PPh₃ (16 mg, 0.06 mmol), Pd(OAc)₂ (3.5 mg, 0.015 mmol) and Et₃SiH (0.048 mL, 0.3 mmol) were sequentially added. After 2 h at 50°C the reaction mixture was poured into water and extracted with CH₂Cl₂ after usual work up and purification by flash chromatography 6 was isolated in 83% yield.

(Received in UK 19 December 1996; revised 25 March 1997; accepted 26 March 1997)